Insight into F plasmid DNA segregation revealed by structures of SopB and SopB–DNA complexes
نویسندگان
چکیده
Accurate DNA segregation is essential for genome transmission. Segregation of the prototypical F plasmid requires the centromere-binding protein SopB, the NTPase SopA and the sopC centromere. SopB displays an intriguing range of DNA-binding properties essential for partition; it binds sopC to form a partition complex, which recruits SopA, and it also coats DNA to prevent non-specific SopA-DNA interactions, which inhibits SopA polymerization. To understand the myriad functions of SopB, we determined a series of SopB-DNA crystal structures. SopB does not distort its DNA site and our data suggest that SopB-sopC forms an extended rather than wrapped partition complex with the SopA-interacting domains aligned on one face. SopB is a multidomain protein, which like P1 ParB contains an all-helical DNA-binding domain that is flexibly attached to a compact (beta(3)-alpha)(2) dimer-domain. Unlike P1 ParB, the SopB dimer-domain does not bind DNA. Moreover, SopB contains a unique secondary dimerization motif that bridges between DNA duplexes. Both specific and non-specific SopB-DNA bridging structures were observed. This DNA-linking function suggests a novel mechanism for in trans DNA spreading by SopB, explaining how it might mask DNA to prevent DNA-mediated inhibition of SopA polymerization.
منابع مشابه
Centromere binding specificity in assembly of the F plasmid partition complex
The segregation of plasmid F of Escherichia coli is highly reliable. The Sop partition locus, responsible for this stable maintenance, is composed of two genes, sopA and sopB and a centromere, sopC, consisting of 12 direct repeats of 43 bp. Each repeat carries a 16-bp inverted repeat motif to which SopB binds to form a nucleoprotein assembly called the partition complex. A database search for s...
متن کاملDefining the Role of ATP Hydrolysis in Mitotic Segregation of Bacterial Plasmids
Hydrolysis of ATP by partition ATPases, although considered a key step in the segregation mechanism that assures stable inheritance of plasmids, is intrinsically very weak. The cognate centromere-binding protein (CBP), together with DNA, stimulates the ATPase to hydrolyse ATP and to undertake the relocation that incites plasmid movement, apparently confirming the need for hydrolysis in partitio...
متن کاملInsight into centromere-binding properties of ParB proteins: a secondary binding motif is essential for bacterial genome maintenance
ParB proteins are one of the three essential components of partition systems that actively segregate bacterial chromosomes and plasmids. In binding to centromere sequences, ParB assembles as nucleoprotein structures called partition complexes. These assemblies are the substrates for the partitioning process that ensures DNA molecules are segregated to both sides of the cell. We recently identif...
متن کاملPlasmid segregation by a moving ATPase gradient.
Unlike the mitotic segregation of eukaryotic sister chromatids, DNA partitioning in bacteria is still not well understood. Bacterial high–copy-number plasmids can be stably maintained by random distribution of their copies during cell division. In contrast, the faithful transmission of low–copy-number plasmids and many chromosomes depends on an active process mediated by conserved, tripartite s...
متن کاملLocalization of F plasmid SopB protein to positions near the poles of Escherichia coli cells.
The subcellular localization of the SopB protein, which is encoded by the Escherichia coli F plasmid and is involved in the partition of the single-copy plasmid, was directly visualized through the expression of the protein fused to the jellyfish green fluorescent protein (GFP). The fusion protein, but not GFP itself, was found to localize to positions close but not at the poles of exponentiall...
متن کامل